- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Singh, Aryan (2)
-
Abdul_Nazeer, Aahil (1)
-
Addepalli, Isabel (1)
-
Aggarwal, Deepti (1)
-
Agnihotri, Prisha (1)
-
Ali, Ahlaam_A (1)
-
Amorosi, Clara_J (1)
-
Anand, Abhinav (1)
-
Anderson, Leah_M (1)
-
Atukuri, Ashna (1)
-
Awi, Thang (1)
-
Basrai, Insiya (1)
-
Bathala, Hitha (1)
-
Bhide, Sarang (1)
-
Brewer, Rebecca (1)
-
Burris, Owen (1)
-
Cantor, Benjamin_B (1)
-
Cervantes, Jocelyn (1)
-
Chakraborty, Tridib (1)
-
Champlin, James (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Purpose This research introduces an innovative solution that revolutionizes the study of linear and nonlinear dynamical systems—a smart automatic modal hammer. With its affordability and intelligent capabilities, this automatic modal hammer becomes an invaluable tool for research and industry, enabling repeatable strikes with precise force control. This system's significance becomes particularly evident when studying nonlinear systems, which heavily rely on the excitation level for their dynamics. By offering a cost-effective design this proposed system proves to be robust in accelerating research on nonlinear dynamics, providing researchers with an efficient and accessible means to delve deeper into these complex systems. Methods The proposed design integrates a commercial modal hammer, commonly used in modal testing, and a stepper motor. This stepper motor is enhanced with an encoder and servo driver, all expertly controlled by a Raspberry Pi. Results What sets this system apart is its clever utilization of regression models to acquire knowledge of the intrinsic relationship between the applied force and hammer velocity precisely during the impact. This acquired knowledge is the foundation for controlling the motor's behavior, ensuring consistent and accurate excitation of the structure with the desired force. Conclusion The capabilities of the proposed automatic modal hammer are demonstrated using a linear two-story tower and a model airplane wing with a nonlinear vibration absorber.more » « less
-
Geck, Renee_C; Moresi, Naomi_G; Anderson, Leah_M; yEvo_Students; Addepalli, Isabel; Aggarwal, Deepti; Agnihotri, Prisha; Ali, Ahlaam_A; Amorosi, Clara_J; Anand, Abhinav; et al (, G3: Genes, Genomes, Genetics)Abstract Caffeine is a natural compound that inhibits the major cellular signaling regulator target of rapamycin (TOR), leading to widespread effects including growth inhibition. Saccharomyces cerevisiae yeast can adapt to tolerate high concentrations of caffeine in coffee and cacao fermentations and in experimental systems. While many factors affecting caffeine tolerance and TOR signaling have been identified, further characterization of their interactions and regulation remain to be studied. We used experimental evolution of S. cerevisiae to study the genetic contributions to caffeine tolerance in yeast, through a collaboration between high school students evolving yeast populations coupled with further research exploration in university labs. We identified multiple evolved yeast populations with mutations in PDR1 and PDR5, which contribute to multidrug resistance, and showed that gain-of-function mutations in multidrug resistance family transcription factors Pdr1, Pdr3, and Yrr1 differentially contribute to caffeine tolerance. We also identified loss-of-function mutations in TOR effectors Sit4, Sky1, and Tip41 and showed that these mutations contribute to caffeine tolerance. These findings support the importance of both the multidrug resistance family and TOR signaling in caffeine tolerance and can inform future exploration of networks affected by caffeine and other TOR inhibitors in model systems and industrial applications.more » « less
An official website of the United States government
